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Rational Chebyshev Approximation on Subsets

CHARLES B. DUNHAM

Department ofComputer Science, University of Western Ontario, London, Ontario, Canada

In this note we study the closeness of a best Chebyshev approximation by
generalized rational functions on a set, to a corresponding best approximation
on a subset thereof. Such a problem is of practical interest, as we often deter­
mine a best approximation on an interval or rectangle in 2-space, as a limit of
best approximations on finite point sets.

Let X be a compact set and let {~l' ... , ~n}, {l/Ji, ... , 1fm} be linearly inde­
pendent subsets of C(X). Define

The conventions of Boehm (assuming his dense nonzero property is satisfied)
or of Goldstein (stabilized rational functions) ([2], Chapter 9) can be used to
give R(A,x) a value when Q(A,x) = O. For Ya compact subset of X, define

)lglly = sup{jg(x)! : x E Y},

&l( Y) = {R(A,.): liR(A,. )lly < 00, Q(A,x):;;, 0 for x E Y, Q(A,.)¢O}.

The problem of rational approximation of ! E C(X) on Y, is to choose
r E &l( Y) such that II!- rllyis minimal. Such an r is called a best approximation
to!on Y. It is a consequence of the theory of Boehm or Goldstein (depending
on whose conventions we use) that a best approximation exists to all! E C(X)
on Y.

Let {Xk} be a given sequence of subsets of X such that for any x E X, there is
an Xk E X k such that {xk } --+ x. Let R(A k ,.) be a best approximation to!on X k •

We obtain in this note several results concerning convergence of {R(A k , .)} to a
best approximation to!on X.

For convenience in existence and convergence arguments, we normalize
rational functions R(A, .) so that

(1)

THEOREM 1. Let r* be best tof on X. Then

II!- R(A k ,·) Ilxk --+ II!- r*llx.
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Proof.· Define
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n

IIAII = L lakj.
k~1
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Suppose that {IIAkll} is an unbounded sequence. We can then assume without
loss of generality, that {IIAkll} is also a strictly increasing sequence. Define
Bk= Ak/IIAkll; then {Bk} is a bounded sequence with a limit point B. Select
z E X such that P(B,z) # O. Then there is a closed neighborhood N of z on
which P(B,.) does not vanish. Assume that PCB, z) > O. Then

'ri = inf{P(B,x):x EN}

is positive and for all k sufficiently large, P(Bk,x) > 'ri/2 for x EN. It follows
that inf{P(Ak,x):x EN} --+ CJJ as k --+ 00. For all k sufficiently large we must
have a point Xk E Xk n N such that

m

peAk' Xk) > 211fllx L lI1f!kllx.
k=1

This implies that R(Ak,Xk) > 211111x, which is impossible as

lif- R(Ak,·)llxk;;:" !f(x) - R(AbXk)! > lif- 0llx,

contradicting R(Ak ,.) being best on X. It follows that {IIAkll} is bounded (that is,
the numerator coefficients of {R(A k,.)} are bounded). The denominator
coefficients are bounded by the normalization (1).

{A k } being bounded, has a convergent subsequence, which we assume,
without loss of generality, is {Ak} itself, with limit A. We claim that R(A,.) is a
best approximation tof on X. Suppose the contrary; then there exists a point x
and a positive E such that

II(x) - R(A,x)1 > III- r*llx + E. (2)

The first possibility is that Q(A,x) = 0 and P(A,x):¢ O. Let {xk} --+ X,Xk E Xk;
then IR(Ak,Xk)! --+ 00, which is impossible. The second possibility is that
Q(A,x) = P(A,x) = O. In the theory ofGoldstein, R(A,x) can always be defined
in this case so thatf (x) - R(A, x) = O. In the theory of Boehm, we can find in
the neighborhood of x a point at which Q(A,.) does not vanish and for which
an inequality of the type (2) holds. Thus, we need only consider the remaining
possibility, which is that Q(A, x) =1= O. In this case, let {Xk} --+ X'Xk E Xk; then
{If(Xk) - R(Ak,Xk)\} --+ If(x) - R(A,x)j and for all k sufficiently large,

II(Xk) - R(Ak, xk)1 > III- r*llx + E.

This contradicts R(Ak,.) being best to I on Xk. Thus, R(A,.) is best and the
theorem follows.
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It is easily seen that {A k } -+ A, Q(A, x) > °imply that R(Ak,x) -+ R(A,x).
An examination of the proof of the theorem gives

COROLLARY 1. The sequence {Ak} has a limit point. For any such limit point
A, R(A,.) is a best approximation to 1 on X, and a subsequence {R(Ak(j)")} 01
{R(Ak,.)} exists converging pointwise to R(A,.) outside the zeros 01 Q(A,.).

If {Ak}-+A and Q(A,.) has no zeros, {R(A ko .)} converges uniformly to
R(A, .). Again, an examination of the proof of Theorem I gives

COROLLARY 2. Suppose 1 has a unique best approximation R(A,.) which
cannot be represented in thelorm R(C,.), with Q(C, .) having a zero in X. Then
{R(A k,.)} converges uniformly to R(A,.) on X.

Define

SeA) = {R(A,.) Q(B,.) + PCB, .)}.

THEOREM 2. Let R(A,.) be best, Q(A,.) > 0, and S(A,.) a Haar subspace.
Then R(A,.) is the unique best approximation.

Proof It is known ([1], p. 164) that S(A,.) being a Haar subspace implies that
R(A, .) = plq is the unique best approximation to 1 on X among rational
functions with positive denominators. Suppose R(C,.) = sit is also a best
approximation, t having a zero. Since

( q(x) p(x) t(x) sex)

E(x~.s1~ = 1q(X). +t(x) . qTx> +q(x)+t(x) . t(x)

q(x) + t(x) p(x) Of ( ) = ( ) = °
q(x) 1 S x t x ,

if t(x) # 0,

(p +s)/(q + t) lies between plq and sit. It must therefore be also a best approxi­
mation. But it has a positive denominator, contradicting the uniqueness ofplq
among such functions.

COROLLARY 3. Let1 have R(A,.) as a best approximation, Q(A,.) > 0, and
S(A,.) be an (n + m - I)-dimensional Haar subspace. Then {R(Ako .)} converges
uniformly to R(A, .) on X.

Proof S(A,.) is (n + m - I)-dimensional, R(A,.) cannot be represented in
the form R(C, .), Q(C, .) with a zero. By Theorem 2, R(A, .) is the unique oest
approximation, The Corollary follows from Corollary 2.
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The theory of this note can be applied to the classical problem of approxi­
mation by ratios of polynomials of degree n - 1 to polynomials of degree
m - 1, on an interval [a,b]. Such ratios are customarily restricted to have
positive denominators on [a,b]; but as any ratio of polynomials bounded on
[a,b] can be written in this form, this is no restriction. Assume without loss of
generality that Q(A,.) > 0 and that P(A,.), Q(A,.) are relatively prime. Let
P(A,.), Q(A,.) have exact degrees i,j, respectively. The subspace SeA) is the
space of ratios of polynomials of degree n + m - 2 - min{n - 1 - i, m - 1 - j}
to Q(A,.), a Haar subspace of dimension n + m - 1 - min{n - 1 - i,
m - 1 - n. The hypotheses of Corollary 3 are satisfied if and only if i = n - 1
orj = m - 1, that is R(A,.) is nondegenerate, or, equivalently, of maximum
degree (in the sense of Rice).

We give an example to show that {R(A k ,.)} need not converge uniformly to
R(A,.) even if R(A k ,.) is a unique best approximation. Let X= [-1,1],
f(x) = x, and R(A,x) = ai/(a2 + a3x). Asfalternates once on [-1,1],0 is the
unique best approximation to f. Now let Xk = [-1 + 11k, 1]; thenf does not
alternate once on Xk • Since all elements of f?l(Xk ) except the zero element are of
degree 2, the unique best approximation rk tof on Xk is characterized byf - rk

alternating at least twice on Xk • If {rk } converged uniformly to O,fwould have
to alternate twice. By drawing a diagram it can be seen that rk(-I) does not
converge to zero. This example shows that the dimensionality condition of
Corollaries 2 and 3 cannot be deleted.
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